IMAGING THE SUBSURFACE: THE EFFECT OF LOGJAMS ON GROUNDWATER-SURFACE WATER EXCHANGE

Teodora Mitroi1, Megan Doughty2, Jackie Randell2, Kamini Singha2

1Georgia State University, 2Colorado School of Mines

https://openclipart.org/detail/245173/high-poly-raclawka-valley-creek
PROJECT OBJECTIVE

Does a logjam change the extent of hyporheic exchange? If so, how?

Can we accurately represent this using Electrical Resistivity Imaging (ERI)?
HYPORHEIC ZONE AND LOGJAMS

SELECT YOUR PLAYER
HYPORHEIC ZONE AND LOGJAMS

• Logjam: buildup of wood material into a distinctive unit along a stream (Manners, Doyle et al. 2007)
HYPORHEIC ZONE AND LOGJAMS

• Logjam: buildup of wood material into a distinctive unit along a stream (Manners, Doyle et al. 2007)
• Logjams \uparrow resistivity \Rightarrow water spends \uparrow time in stream
HYPORHEIC ZONE AND LOGJAMS

• Logjam: buildup of wood material into a distinctive unit along a stream (Manners, Doyle et al. 2007)
• Logjams ↑ resistivity → water spends ↑ time in stream
• Greek: Hypo- Under; Rheos- Stream (Ward, Gooseff et al. 2010)

https://cordis.europa.eu/result/rcn/200984_en.html
Hyporheic Zone and Logjams

- **Logjam**: buildup of wood material into a distinctive unit along a stream (Manners, Doyle et al. 2007)
- **Logjams** \uparrow resistivity \rightarrow water spends \uparrow time in stream
- **Greek**: Hypo- Under; Rheos- Stream (Ward, Gooseff et al. 2010)
- **Hyporheic zone**: region of surface water and groundwater exchange

https://cordis.europa.eu/result/rcn/200984_en.html
HYPORHEIC ZONE AND LOGJAMS

- **Logjam**: buildup of wood material into a distinctive unit along a stream (Manners, Doyle et al. 2007)
- Logjams \uparrow resistivity \rightarrow water spends \uparrow time in stream
- **Greek**: Hypo- Under; Rheos- Stream (Ward, Gooseff et al. 2010)
- Hyporheic zone: region of surface water and groundwater exchange
- Flow and other stream features: may increase extent as well

HYPORHEIC ZONE AND LOGJAMS

• Logjam: buildup of wood material into a distinctive unit along a stream (Manners, Doyle et al. 2007)
• Logjams \uparrow resistivity \rightarrow water spends \uparrow time in stream
• Greek: Hypo- Under; Rheos- Stream (Ward, Gooseff et al. 2010)
• Hyporheic zone: region of surface water and groundwater exchange
• Flow and other stream features: may increase extent as well

https://cordis.europa.eu/result/rcn/200984_en.html

https://www.nap.edu/read/10967/chapter/8
RELEVANCE

- Nutrient cycling → biota (flora, fauna, prokaryotes, etc.)

http://www.bgs.ac.uk/research/groundwater/catchment/hyporheic_zone/home.html
RELEVANCE

- Nutrient cycling ➔ biota (flora, fauna, prokaryotes, etc.)

http://www.bgs.ac.uk/research/groundwater/catchment/hyporheic_zone/home.html
RELEVANCE

• Nutrient cycling \rightarrow biota (flora, fauna, prokaryotes, etc.)
• Fast-forming logjams \rightarrow change ecosystem

http://www.bgs.ac.uk/research/groundwater/catchment/hyporheic_zone/home.html
RELEVANCE

• Nutrient cycling → biota (flora, fauna, prokaryotes, etc.)
• Fast-forming logjams → change ecosystem
• Importance:
 • Engineering logjams
 • Maintaining and conserving ecosystem
 • Water quality and quantity

http://www.bgs.ac.uk/research/groundwater/catchment/hyporheic_zone/home.html
PROBLEM AND SOLUTION

Traditional methods:
- Intrusive: cumbersome borehole installation
- Incomplete: point-verification (1D) limits understanding

Our methods:
- Accurate representation of the hyporheic zone’s complex processes using Electrical Resistivity Imaging (ERI)

https://andrewbelko.wordpress.com/2013/07/24/a-long-overdue-tanzania-update/

https://www.environmental-geophysics.co.uk/Tech_Resistivity.html
FIELD SET-UP

- Electrodes and cable installed on two cross-sections of stream to for 2D representation
- Salt injection allows us to trace solute’s path
FIELD SET-UP

- Electrodes and cable installed on two cross-sections of stream to for 2D representation
- Salt injection allows us to trace solute’s path
PROCESSING

- Resistivity-meter sends current → data tells us about the subsurface
- Programs: MATLAB data processing and plotting, R2 inversion software
SUBSURFACE RESISTIVITY

Bulk (or Apparent) Resistivity, ρ_a:

- $\rho_a = Rk$ \((\Omega \cdot m)\)
- $R=$resistivity

SUBSURFACE RESISTIVITY

Bulk (or Apparent) Resistivity, ρ_a:

• $\rho_a = Rk \quad (\Omega \cdot m)$
 • R = resistivity

Geometric Factor, k:

• accounts of geometric arrangement of electrodes
 • A, M, N, B = electrode positions
 • $k = 2\pi \left(\frac{1}{A-M} - \frac{1}{A-N} - \frac{1}{B-M} + \frac{1}{B-N} \right) \quad (m)$

SUBSURFACE RESISTIVITY

Bulk (or Apparent) Resistivity, ρ_a:

- $\rho_a = Rk \ (\Omega \cdot m)$
- $R =$ resistivity

Geometric Factor, k:

- accounts of geometric arrangement of electrodes
 - $A, M, N, B =$ electrode positions
 - $k = 2\pi \left(\frac{1}{A-M} - \frac{1}{A-N} - \frac{1}{B-M} + \frac{1}{B-N} \right) \ (m)$

Conductivity, C:

- $C = \frac{1}{R} \ (\frac{S}{m})$
FLUID CONDUCTIVITY

- Point-measurement
- Placed in stream
- Measures homogenous surface water
RESULTS

Fluid vs. Bulk Conductivity:

- Fluid has minimal tailing
- Bulk has substantial tailing
- Noise from fluid EC measurement
RESULTS

Control vs. Logjam:

- Control has slight bump after tracer ends
- Logjam tailing slower return to background
RESULTS

Control vs. Logjam:

• Control has slight bump after tracer ends
• Logjam tailing slower return to background

More shallow slope than control
RESULTS

Flow:
• 0.8551 cfs June
• 0.2274 cfs July

• Low-flow (July) injection slower return to background
DISCUSSION

• Bulk tailing demonstrates subsurface uptake and release
DISCUSSION

• Bulk tailing demonstrates subsurface uptake and release

• Logjam reach implies slower movement in the subsurface due to increase in hydraulic resistance
DISCUSSION

• Bulk tailing demonstrates subsurface uptake and release
• Logjam reach implies slower movement in the subsurface due to increase in hydraulic resistance
• Flow rate influences rate of solute discharge
KEY POINTS

- Fluid EC data incomplete; Bulk EC reigns
- Low-flow and logjam: may indicate longer residence time, meaning more filtration
KEY POINTS

• Fluid EC data incomplete; Bulk EC reigns
• Low-flow and logjam: may indicate longer residence time, meaning more filtration
SUMMARY

- Logjams and low-flow may increase the extent of hyporheic exchange.
- ERI gives us a better model of the area of exchange using tracer injection.
- Study leads to improving methods in conserving, managing, and restoring riverine ecosystems.

[Research URL: https://ecology.wa.gov/Research-Data/Monitoring-assessment/River-stream-monitoring]
QUESTIONS?

ACKNOWLEDGMENTS

Thank you Aisha Morris, Melissa Weber, Nadine Reitman, Rolf Nagaard, Emily Fairfax, Megan Brown, UNAVCO employees and UNAVCO interns for their guidance, support, and encouragement.
This material is based upon work supported by the National Science Foundation under Grant No.1261833 and No.1819134

REFERENCES

Fluid vs Bulk Electrical Conductivity

Figure 1: Control June
- **Conductivity (μS/cm)**: Ranges from 20 to 120.
- **Time**: 12:00 to 12:00.
- **Data Points**: Conductivity values are plotted over time for fluid and bulk samples.

Figure 2: Below Logjam June
- **Conductivity (μS/cm)**: Ranges from 40 to 65.
- **Time**: 12:00 to 12:00.
- **Data Points**: Conductivity values are plotted over time for fluid and bulk samples.

Figure 3: Control July
- **Conductivity (μS/cm)**: Ranges from 20 to 120.
- **Time**: 12:00 to 12:00.
- **Data Points**: Conductivity values are plotted over time for fluid and bulk samples.

Figure 4: Below Logjam July
- **Conductivity (μS/cm)**: Ranges from 40 to 65.
- **Time**: 12:00 to 12:00.
- **Data Points**: Conductivity values are plotted over time for fluid and bulk samples.