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Abstract
Building on the success of the eSense BioMimetic model-
ing done in (Franklin and Martin 2016), eSense 2.0 expands
the modeling to include a stronger predator / prey relation-
ship. eSense provides a powerful yet simplistic reinforce-
ment learning algorithm that employs model-based behav-
ior across multiple learning layers. These independent lay-
ers split the learning objectives across multiple layers, avoid-
ing the learning-confusion common in many multi-agent sys-
tems. The new eSense 2.0 increases the number of layers and
the amount of separation between agents so that the behav-
iors for each agent can be more highly customized and adds
specific additional layers for behavior-only learning. In other
words, each agent now has multiple layers to model each as-
pect of their behavior (e.g., obstacle avoidance, prey obser-
vation, prey seeking, etc.). This new abstraction of breaking
out the various agent behaviors into multiple levels furthers
speeds up the learning and clarifies the objectives the agent
is considering. This significantly builds on the general goal
of eSense (splitting out multiple agents into their own lev-
els) because now the agent’s behaviors are also split out into
multiple layers. The learning is now more expressive, faster,
and less noisy. This papers seeks to present this new multi-
level learning system for multi-agent systems and confirm its
performance through experimentation.

Introduction
Real-world artificial intelligence and learning is often made
more difficult by the various goals that each agent has and
the complex interactions between agents within a system.
This is especially true in multi-agent systems where the de-
sired interactions take on a strategic, intelligent meaning.
The normal approach of using monolithic policies is ren-
dered ineffective because of having multiple behaviors for
each agent, some of which frequently conflict, and exacer-
bated by the multiple teams of agents which are in direct
conflict. In this case, the system being modeled in the sim-
ulation is the predator / prey dynamic. To do so, each agent
is considered a biomimetic model of a sensing agent. This
means that each agent has its own ‘personality’ - a method-
ology of movement, a set of goals to seek, other agents to
avoid, etc. Further, each agent has a sensing grid - this grid
is how the agent sees the world around them. This might be
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modeled as passive echolocation, active electrolocation, or
any of several sensing models previously presented in the
original eSense paper (Franklin and Martin 2016). Expand-
ing on that, there are additional sensing layers that are seek-
ing and avoiding goals and other agents, depending on the
model in force. Additionally, the new model includes multi-
ple biomimetic models interacting within the environment.

eSense 2.0 takes the single-agent success and builds
on it to add multiple layers of perception. This increases
the performance of each agent and increases the level of
biomimicry. eSense 2.0 also places these much more capa-
ble agents into multi-agent scenarios and allows interactions
on multiple levels. The experiments will show the increased
expressivity, higher fidelity modeling, and the multi-agent
interaction capability of the system.

Related Works
In (Hussein 2010) the authors have presented a mathemat-
ical analysis on predator / prey relationships and their in-
teractions within shared environments. This interaction can
be understood in terms of the pressure each set of animals
places on each other from their presence as relates to their
distinct populations and amount of shared environment. This
work was helpful in modeling these interactions within eS-
ense and understanding a mathematical modeling of these
relationships.

The interaction of predators and prey, especially under-
standing the balance of their populations and level of their
interactions within the same ecosystem, is modeled thor-
oughly in (Freedman and Waltman 1984). This work, though
older, is still cited as a reference on the concept of persis-
tence (where persistence is defined as a greater than zero
population now and at the limit). This work contributed the
idea of balance of populations and the concept of persistence
to this research. It is important to note that the referenced pa-
per works in a deterministic environment, so the work pro-
posed herein expands beyond this consideration into both
non-deterministic and stochastic space.

One important intuition that was confirmed in (Lima
2002) was that of understanding the difference between iso-
lating predators from prey and analyzing them separately
versus studying and understanding them in the proper real-
world context. This more accurate context allows for coor-
dinated and reactive strategic behavior from the predators



while tracking the prey. There are also two additional works
inside this paper that elucidate the complexities of these in-
teractions more clearly. They note first that the multi-trophic
games of habitat choice impacts this kind of real world in-
teraction significantly. Secondly, they note that the scale of
these interactions matter. While this is not surprising, it is
important to have confirmed empirically. This research pro-
posed and confirmed in this paper understands both of these
ideas and seeks to model them appropriately (i.e., with the
correct level of expressivity and complexity to allow this
kind of large-scale strategic interaction).

In (Yi, Wei, and Shi 2009), there is a lengthy treatise
on the complexities that arise from multiple populations of
predators and prey existing in the same interactive environ-
ment. The exhaustive analysis of the Hopf bifurcation and
multiple steady-state bifurcations is especially informative
in understanding the pressure concepts of multiple agents
occupying a competitive space. For the work contained in
this research, this paper offered a thorough mathematical
analysis of competitive-cycle dynamics of these interactions
that are insightful and illuminating. This research builds
on the premises and expands them to stochastic and non-
deterministic scenarios like those found in the experiments
conducted in the simulations to prove the eSense 2.0 ex-
panded models.

There were many models used in the previous work that
were now revisited for information about the expanded
biomimetic modeling done in eSense 2.0. (Ammari and Gar-
nier 2013) offers a treatise on the modeling of electric fish
for experimentation and simulation in multi-agent scenarios.
These models were expanded by comparing this previous
work with (Boyer 2012). This additional reference provided
more detail on the types of models available and insight into
passive and active models for both types of target location.
Additionally, (Hopkins 2005) offers specific information for
modeling passive electrolocation and understanding how it
is used in the real world. This work was essential to ground
the symbols for each experiment and to ensure experimental
veracity. The earlier models and final experimental models
were enhanced by using the information from (Shieh 1996).
Each of these contributed to the modeling of the fields uti-
lized by both the active and the passive location models.

The integration of the various models and bringing them
from real-world, biological models, into simulated entities
within a reinforcement learning environment was aided sig-
nificantly by the work in (Coggan 2008). This work offers
some background insight into how others have approached
these types of learning environment models. In particular,
this work studies exploration and exploitation in reinforce-
ment learning, and, vitally, the balance needed for them both
to be effective. This work helped verify the need for utiliz-
ing the ε-greedy approach utilized by this research. In the
proposed work the exploration and exploitation are balanced
progressively during the execution of the algorithm. Initially,
with ε high, the algorithm leans towards utilizing more ex-
ploration to explore the state-space more thoroughly. Even-
tually, over time, as ε decreases, the algorithm utilizes more
exploitation. While there were no other papers found that
have applied a similar model as the one proposed herein,

this paper did at least offer insight into the validity of the
approach.

The concepts of Reinforcement Learning, of which both
Temporal Difference learning and SARSA-λ are examples,
were described in (Woergoetter and Porr 2008) and (Tay-
lor and Stone 2006). These works were utilized to confirm
the models used for the learning systems for these exper-
iments and to gain insight into common settings for both
approaches. While these referenced works propose and de-
fine various aspects of reinforcement learning, they do not
propose anything similar to the multi-layered dynamic ap-
proach described in this research. Further, they allude to why
this particular goal, a dynamic reward, is a non-starter for
reinforcement learning (that is, convergence is statistically
improbable).

Methodology
This new eSense modeling builds on the previous work, ref-
erenced in the abstract, and expands on it significantly. In
the previous work there were a number of innovations that
led to the overall success of eSense, and those will be sum-
marized here for clarity. For complete background, please
review (Franklin and Martin 2016).

Originally, eSense innovated the idea of taking the
simple-yet-powerful reinforcement learning technique
SARSA-λ and utilizing it in creative ways to accomplish
complicated learning. In particular, it is well known from
(Sutton and Barto 1998) that SARSA-λ is a clean, efficient
minimal information learning technique for reinforcement
learning, but it does not work if the goal is moving. A
moving goal essentially erases all learning in the Q-table
because of the history contained within the grid. For clarity,
assume, w.l.o.g., that the learning in the SARSA-λ is
Q-learning, and this learning uses two distinct tables for
tracking the progress of the learning. Standard SARSA
expands the typical Q-learning into a Q(s, a) table that
stores the values of taking any move from the current state
(i.e., Q holds values of each a for and given s). This Q(s,
a) table is then consulted any time the agent is preparing to
move to select the next action based on one of two options.
In standard ε-decay technique, the next move is selected
pseudo-randomly with ε probability and by max value with
(1 − ε) probability. This helps the agent to explore more
often early on and exploit the learned data more frequently
as the learning progresses. The second table utilized in the
SARSA-λ variant is the e-table. This second table holds a
type of memory of states visited since the epoch has begun
and allows for a longer history of updates to the Q(s, a)
table to be made each iteration. Typically only the previous
states would be updated, but a decaying reward can be
effectively propagated back along the entire path of moves
by utilizing the e-table date. This method of updating in a
typical grid world example means that as long as the goal is
stationary, the Q(s, a) table will eventually hold a policy that
offers the best move from any given state, thus achieving a
minimal pathing from the origin point to the goal. However,
as mentioned, if the goal were moved each epoch, not only
would the Q(s, a) table no longer lead to the goal, it would
actively lead away from it. If, for example, the goal were



moved only once, then the learning could eventually repair
the table to point towards the new goal location, but it would
take much longer than it did the first time because of its bias
to the old goal location.

To overcome this, the eSense technique was devised. As
presented in the reference paper, this limitation was removed
through layering the behaviors into multiple grids. eSense
works on multiple levels of learning through the use of a
master grid for obstacle detection and avoidance and an-
other layer for sensing (i.e., examining what is around the
agent and reacting to that rather than using the master grid).
This means that the agent can wander around the master grid
and learn obstacle avoidance without worrying about goals.
The sensing layer can then be utilized for goal-seeking. The
sensing layer is homeostatic, centered around the agent. As
the agent searches the grid, using learned data in the master
grid to avoid obstacles, the goal eventually moves within the
sensing grid. This triggers the learning in the sensing grid
to react to the presence of the goal. The key intuition within
this technique is that the learning is identical, but the action
set is reversed (this can be thought of as moving the goal
towards the agent - which is not possible, but it informs the
agent’s direction of movement). This was a key innovation
of the eSense methodology.

Once this technique was proven, eSense went even far-
ther by allowing for a moving target. In the original formu-
lation the goal was stationary, just placed randomly around
the grid. In the final formulation, the moving goal became
a prey and the agent became a predator. The sensing grids
were converted to reflect the various biomimetic models
(both passive and active echolocation and electrolocation).
This means that the sensing grids had differing sizes and
shapes. As the predator searched the master grid the prey
would follow a pattern of movement dictated by the pro-
gram. When the prey entered the predator’s sensing grid the
predator would react to move towards the prey in an effort to
catch it. To be clear, this was not programmed behavior - the
predator learned these behaviors from scratch using the sim-
plistic SARSA-λ reinforcement learning without any prior
knowledge. This is a significant outcome and the novel con-
tribution of the original eSense paper.

eSense 2.0 expands significantly on this multi-layered
learning methodology to include even more layers with ad-
ditional agents in the system. First, the prey is now an agent.
The prey has its own obstacle avoidance master grid that is
learning to avoid edges, obstacles, and other obstructions.
The prey also has another master grid that is marking lo-
cations where food has been found (the food is the prey’s
goal and can be located at any number of stochastic loca-
tions around the grid). Additionally, the prey has two sensing
grids. The first sensing grid is designed to detect and react
to food. When food appears on this sensing grid, the agent
learns through trial and error to seek after the food. The sec-
ond sensing layer is the predator avoidance layer. This sens-
ing layer detects when predators are within range and learns
to avoid them (this is the same learning technique, but with
the opposite set of actions). This multi-modal learning is dif-
ficult for traditional agents because trying to learn a large,
complex monolithic policy is both contradictory (learning

to move towards and away from goal objects) and confusing
(clouding up the learning with contrary goals and opposing
actions) (Franklin 2015). The new multi-layered approach
presented in eSense 2.0 allows for less complex learning
techniques with single-goal objectives, thus overcoming this
learning complexity and confusion. Second, the predator
also has the multi-layered approach. As with the prey, the
predator has its own obstacle avoidance layer. This could be
the same master layer as the prey, but by giving each agent
their own obstacle avoidance layer each agent’s size can be
considered independently. For example, a smaller prey can
slip through a smaller opening in the obstacle field that a
predator cannot. This individualized behavior is an impor-
tant part of the eSense methodology. Further, the predator
also has an additional master layer to track the most likely
places to find prey as well as two sensing layers. The first
sensing layer is seeking prey (its food source) while the sec-
ond is learning to avoid other predators. This configuration
allows for an entire hierarchical ecosystem of predators and
prey, as well as allowing for multiple agents within each
layer.

Each layering the agent model is performing SARSA-λ,
though with different ranges and setups. Each layer is learn-
ing according to the update function shown in Equation 1.
This updates the Q(s, a) table by utilizing the reward r for
moving to the next state, the next values provided from tak-
ing the chosen next action (a′) from the next state (s′) (stored
as Q(s′, a′)). It is mitigated by the learning rate, α. The al-
gorithm for the updates and the movement tracking history
is shown in Figure 1. This shows the step by step updates
shown in Equation 2. The update amount, the δ, is calcu-
lated in Equation 3. The e-table is incremented for every
space that is visited, according to Equation 4. The decay-
ing updates in the e-table are updated according to Equation
4 using the discount rate γ and the decay rate λ. This results
in an eligibility trace (a history of decaying rewards based
on the previously visited, and, thus, eligible spaces that can
receive an update / reward). These traces are similar to those
shown in Figure 2.

Q(s, a) = Q(s, a)+α(r(s′, a′)+γQ(s′, a′)−Q(s, a)) (1)

Figure 1: SARSA-λ Algorithm (Sutton and Barto 1998)

Q(s, a) = Q(s, a) + αδe(s, a) (2)



δ = r(s′, a′) + γQ(s′, a′)−Q(s, a) (3)

e(s, a) = e(s, a) + 1 (4)

e(s, a) = γλe(s, a) (5)

Figure 2: SARSA-λ Eligibility Traces (Sutton and Barto
1998)

As can be seen from this formulation, each layer de-
scribed above is actually composed of multiple layers (the
Q(s, a) table and the e-table). This means that each layer
can be learning on its own independently. Each of these lay-
ers is small enough to learn quickly and is focused on only
one aspect of the agent’s behavior, so the monolithic pol-
icy can be avoided and replaced with smaller policies cus-
tomized for each layer. This arrangement of layers means
that there must be one additional layer, the agent layer, that
controls the focus of the agent across these multiple layers.
The layers are arranged in a hierarchy, as shown in Figure 3.
The agent layer sits at the bottom of the hierarchy and orga-
nizes the behavior of each agent by receiving the fusion of
the sensor layers. For example, the prey agent layer is con-
stantly running the baseline obstacle avoid layer (meaning
that it considers all higher actions with respect to the base
action of avoiding obstacles). Additionally, it is adding in-
formation to its food location layer each time it finds food.
Of course, when food is sensed on the food sensing layer
(generically, the goal seeking layer), it reacts to pursue that
food. Finally, the highest priority layer is the predator avoid
layer. This means that the agent is constantly wandering the
master grid avoiding obstacles and seeking food. When it
finds food, it notes that location and seeks after it. Suppose
a predator is sensed - now the agent layer shifts priorities
to moving away from the predator, but considers all of the
lower actions. In other words, it will move away from the
predator, but towards food, all while avoiding obstacles. It
also notes what it learns, (e.g., where it sensed predators or
food, both stored on their own history layers). Again, to reit-
erate, this behavior is not programmed in - the agent is given
no information ahead of time other than that food receives
a positive reward and dying a negative reward. The agents
are learning from scratch with no other information than the
rewards given. Each layer is able to adapt and learn quickly
because the layers are separated as described.

The information from each layer is fused into a best ac-
tion for the agent in a vector fashion and stored on the agent
layer. As can be seen in Figure 4, the input from each layer is
laid out on the graph with both a direction and a magnitude.

Figure 3: eSense Layers

The magnitude is the weighting for each layer, and this can
be provided as a model (in the case of biomimicry) or it can
be learned over time by experience. The sum total of each
layer’s input is the resultant vector on the agent layer, shown
in Figure 5. The resultant vector is discretized into the action
that most closely matches the intention of the resultant vec-
tor and the action is chosen. When the weighting is correct,
the optimal performance of layer-fusion is obtained and the
behavior maximizes the most important choices while be-
ing mindful of all choices. This can also be thought of as
maintaining a primary goal (e.g., survival), while operating
on the sub-goals (e.g., feeding). This complicated, modeled
behavior is being achieved with several simple layers rather
than with large, monolithic and unwieldy layers that would
take a long time to learn and be difficult to adapt over time.

Figure 4: Sensing Layer Fusion

The smaller sensing layers are shaped in accordance to the
biomimetic models upon which they are based (e.g., elec-
trolocation or echolocation) as well as the modality of sens-
ing (e.g., active or passive). Two of these shaped sensing
layers are shown in Figure 6. The sensing grids are homeo-
static, meaning that they stay centered on the agent (whose
location is marked within each of these grids). These grids
can be shaped to model any reasonable type of sensing ar-
ray, or, more generally, to resemble any type of goal-seeking
apparatus. In any case, the sensing layers are fused to the
agent so that all available layers can send their data to the
agent layer for processing.

Once a goal condition is encountered within a sensing
grid (e.g., a food source, a predator, etc.) the agent layer can



Figure 5: Agent Layer Resultant

Figure 6: Sensing Grids (Agent location noted)

then process the appropriate action to maneuver the agent to-
wards or away from the goal. As stated previously, the sens-
ing layers work in reverse because the agent cannot move
the goal, so the appropriate action is considered as if the goal
were movable, then the reciprocal action is taken. For exam-
ple, if food were detected, the agent would want to move the
food towards it, but it cannot. Instead, it takes the inverse ac-
tion and effectively moves the sensing grid towards the goal.
The learned action becomes to move towards food and away
from predators, or, more generally, towards or away from
goals.

Experiments
In order to test these hypotheses, there were a number of
experiments conducted, and they will be noted in this sec-
tion. The first was to set the prey agent in action to see how
well it could learn to: 1) avoid obstacles; 2) find food; 3)
learn likely food locations; 4) adjust its wandering pattern in
response to likely food locations. This first experiment was
successful. The prey agent learned quickly to avoid obsta-
cles efficiently using the prescribed reinforcement learning
algorithm (meaning that it started with no information other
than the goal rewards, when encountered). Figure 7 shows
this for both the prey and the predator. It also learned to lo-
cate food and move towards it, though this learning took a
bit longer because there are multiple goals (meaning that the
agent had to wander enough to discover the other food lo-
cations). Figure 8 shows the prey’s success at finding food,
increasing over time, versus it being caught by the preda-
tor, slightly increasing over time. Once this behavior was
learned, the wandering pattern of the agent became more

centralized near food sources, as was hypothesized.

Figure 7: Navigation Failures by Agents

The second experiment was akin to the first, but with
the addition of a predator. The predator was simultane-
ously learning obstacle avoidance, food locations (i.e., the
most likely locations of the prey), and predator avoidance.
Of course, the introduction of a predator into the environ-
ment activated the prey’s predator avoidance layer. This re-
sulted in a successful migratory pattern for the predator who
learned to localize on the prey’s food sources. It also slightly
modified the prey’s routine to learn to avoid the most likely
predator locations, though this learning took longer. Fig-
ure 9 shows the average number of moves per epoch for
both agents. In the end, the experiments proved successful
in modeling a biomimetically accurate predator and prey re-
lationship.

Figure 8: Prey: Found Food vs. Caught by Predator

The third experiment built on the second experiment
by introducing multiple prey into the environment. While
this still followed the predictable results (the predator now
learned a more general migratory pattern to adjust to the
multiple locations where prey can be found), it was only a
stepping stone to multiple predators and multiple prey. This
finalized the progression of the experiments and showed
that the prey can learn to distribute themselves across the
food sources, predators can spread out to maximize avail-
able prey to each, and both prey and predators can avoid
their own kind. Figure 10 shows that the addition of multiple
agents show did not affect performance, and is thus scalable



(the trend line is nearly identical to the single agent average
moves graph).

Figure 9: Average Moves without Failure

Figure 10: Total Avg Moves without Failure (All Agents)

Analysis
The experiments proved the efficacy and efficiency of the
multi-layered predator / prey biomimetic modeling. Further,
they verified that complex, intricate, and multi-agent behav-
ior can be learned through even simple reinforcement learn-
ing as long as the various behavioral elements are spread
across multiple coordinated layers. By keeping each layer
simple and focused, the agents were able to learn multiple
goals at one time (e.g., finding food sources while avoiding
prey and obstacles) without a significant increase in training
time. The biomimetic models were further expanded to in-
clude multiple behaviors, though this can be expanded in the
future. There was a lot of experimentation with the size and
shape of the sensing grids and how that impacted the learn-
ing, but it was discovered that while these helped demon-
strate different models they had no significant impact on
learning rates.

Conclusions and Future Work
This work has shown that biomimetic modeling can be real-
ized through simple, multi-layered learning techniques. Ad-
ditionally, the experiments verified that multi-agent interac-
tion, even with teams of agents, works well without signifi-
cantly slowing down the learning. It should be noted that the

introduction of more prey or more predators once the learn-
ing has advanced my cause disruption and instability, but
the learning can adapt. This will be tested in greater detail
in future work. Finally, in future work the hypotheses will
be expanded to include a larger food chain (where predators
have predators). Also, there is the hope to introduce group
behavior versus lone wolf behavior to see if this can be mod-
eled effectively and, if so, what impact it has on learning.

In conclusion, this work has shown tremendous promise
from its simple beginnings and has become more robust
through expansion. It is the author’s hope that this will con-
tinue to be true with further expanded experimentation and
more complex modeling.
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