The Ancient Origins of TRP-dependent Menthol Sensing

Maggie N. Benson, Nathaniel J. Himmel, Jamin M. Letcher, Akira Sakurai, Thomas R. Gray, and Daniel N. Cox

Neuroscience Institute, Georgia State University, Atlanta, GA, USA

Introduction

Drosophila melanogaster are not big fans of menthol.

Menthol, and other terpenes, affect the behavior of insects, like *D. melanogaster*.

- Menthol affects the behavior of insects like *D. melanogaster*.
- In vertebrates, menthol is sensed by the TRP channels TRPA1 and TRPM8.
- However, the mechanisms of menthol sensing in insects remain unknown.

We hypothesized that insect TRP channels play a conserved role in menthol sensing.

Results

TRP channels function in Class IV (CIV) nociceptors to facilitate menthol-evoked rolling.

- CA2+ imaging shows that CIV neurons are activated by menthol.
- CIV neurons, and CIV expression of TRP channels, are both required for rolling.

The last common ancestor of *D. melanogaster* and humans existed prior the protostome-deuterostome split (>550mya)

- The function of many TRP channels have their origins in or prior to the last common bilaterian ancestor, *Urbilateria*.
 - Some debate over morphology of whole animal & nervous system , but likely had some sort of photoreceptive eye spot.
 - Genome likely encoded a variety of TRP channels, including channels from the TRPM and TRPA subfamilies.
 - TRPM(s) and TRPA(s) thermal and electrophile sensitivity likely emerged in or prior to urbilaterian 1-5.
 - However, it is unknown if the TRP-menthol sensing mechanisms have equally ancient origins.

These analyses exclude sarcomerychites.

Conclusions

These findings, in combination with previous discoveries concerning TRP function, demonstrate that the sensory capacity of TRP channels have origins predating the protostome-deuterostome split (>550mya).